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ABSTRACT
L~ t’,‘In this paper we study the stability of finite difference approximations
to initial-boundary hyperbolic systems. As is well-known, a proper
specification of boundary oconditions for such systems is essential for their
solutions to be well-defined. We prove a discrete analogue of the ahovg f.z’if
the numerical boundary oconditiong are consistent with an inflow part of the

problem, they render the overall computation unstable. An example of the

inviscid gasdynamicrs equations is considered.
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UNCONDITIONAL INSTABILITY OF INFLOW-DEPENDENT BOUNDARY CONDITIONS IN
DIFFERENCE APPROXIMATIONS TO HYPERBOLIC SYSTEMS

Eitan 'l'athox'.

1. INTRODUCTION ~ WELL DEFINED HYPERBOLIC SYSTEM

We oconsider the first order hyperbolic system

3 2
{1.1a) T A g = R(xt), t>0,
with initial data
(1.1b) u(x,0) = £(x), t=0,

in the first quarter of the plane 0 € x < ®, Here u = u(x,t) is the N-dimensional

vector of unknowns and by hyperbolicity we mean that the (nonsingular) coefficient matrix y,

A = A(x) is similar to a real diagonal A

ATt = A = alag(d,,eeesd),

. (1.2)
D ese YY) = .
A‘ > Xl >0 > xtn > > AN, xj Aj(x)
The aystem (1.7a) ~ rewritten in its characteristic form g
LI -
(1.3) -5% +A -5% -F

(- denotes multiplication by T on the left), asserts that the characteristic variables

“j are uniquely determined by the forcing terms i'j along the characteristic curves

X, (t) + A, (x.) = 0. The last N - £ of these curves are outgoing curves impinging on the

) 37
’ boundary x = 0 from the right, each of which carries one piece of initial data; thus,
exactly N - £ pileces of information flow *he left boundary x = 0; these are the

last N - § outflow components of u associate. th xj - -Xj > o"‘j‘“. It therefore

' follows that for the system (1.1) to be uniquely solvable, exactly ¢ additional pieces of

information must be provided at the boundary x = 0, \400
Ny St
' "'?S C?'»% o
Uy, C 2oy ¥
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(1.4a) B“lx-o = G, rank (B] = % .
The requirement of these boundary conditions to be on top of the predetermined outflow

components can be expressed as follows (Hersh [1]):

+ L
For all nontrivial ¢ in the eigenspace ¢ gpanned by the eigenvectors {’j}
=1
2 3
asgociated with the positive eigenvalues {X j} s we have
j-’ i
(1.4b) B$ *0 . :

Had the system (1.1a) been given to us in its characteristic form (1.3), the boundary

conditions (1.4) then can be reformulated as the standard reflection

-~ -

(1.5) ot = Ba” + &

where u = (ﬁ*,&') partitioned corresponding to its inflow and outflow parts. The first 3

+

2 inflow characteristic variables u" are then everywhere determined via (1.5) and :

(1.1b) along the ingoing characteristics combined with the N - %

%) = Ny < Opggen?

outflow pieces of data, the solution u is then well defined throughout the region of R :

H

integration. ;

Example. The linearized inviscid 1 - D gasdynamics equations take the primitive fon”) . A

| == N ,‘
i‘ (E.18) TetATe=P 0Sx<®, t>0

where u 2 ((’,u,p)t are the density velocity and pressure respectively, F stands for the

external forces and

n 13 0
= (E.1b) A=|o0 n Y3 Y = ratio of specific heats
0 Y n

with (£ ,n,C)t denoting the corresponding variables we linearize about. The system is

hyperbolic since A 1is diagonalizable by

! (”Neqlectinq low order terms due to the linearization.

2=




v=1|0 Ec 1, c=~N"5E

ar~1

£ dlag(h,n + c,N ~¢C)

We consider the subsonic inflow case 0 < n < c; two boundary conditions are required at
x = 0 to complement the only predetermined outflow variable 53 2 p - EcU associated with
Xa 2 ne~c<0. UWhile prescribing the two conditions one should neither set boundary

values for the predetermined p - 560' nor should he prescribe only U'x_o and

x=0’
Py (or otherwise the two independent relations will again set values for

p‘- Ewlx_o) « Failure to satisfy either one of the above constraints will either imply
inconsistency, or at best, the consistent condition will give no new information and we "
will still be missing one piece of data at the boundary. Both cases sre saved by requiring

(1.4b) to hold:

for all u = (p,U,p)t # 0 in span{d, ,4,} where ¢, = (2£c,0,00%,

02 - (C(:,ez,tc::)t corresponding to l1 «n >0, 12 =N +¢c>0 we should have Bu # 0.

Indeed, requiring 501 # 0 amounts to the requirement of not imposing Ujxmo 204 Piyug

along (i.e, without involving o ), while 502 *# 0 (or =~ which is the same thing =--

| x=0
3(202 - 0‘) # 0) prevent us from preamcribing p - Edl':_o. We are then assured that we
have two genuinely additional boundary conditions complementing the third predetermined
outflow one (for more details we refer to (2]1).

In this paper we study difference approximations to the hyperbolic system (1.1). Ve
show that when our numerical boundary oonditions are zeroth-order accurate with an inflow
part of the problem, they rendar the overall computation unstable —— & discrete analogue of
the necessary ocondi-tion (1.4b). In the next section we set the exact mathematical
framevork for our discussion, and proof of the main theorem is given in Section 3.

This paper was written while visiting the Mathematics Research Center, University of

Wisconsin-Madison, Madison Wisconsin, and I thank the Center and its Director, J. Nohel for

their hospitality.
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2. WELL DEFINED DIFFERENCE APPROXIMATIONS-STATEMENT OF MAIN THEOREM
We would like to solve (1.1), (1.4) by difference approximations. In order to & so,
we introduce a mesh size 4x > 0 and a time step 4t > 0 such that A = At/8x = const.

Using the notation vv(t) E y(vix,t) we approximate (1.1) by a consistent two-step

solvable basic scheme of the form

(2.1a) E Aj("v)"vq.j t +4¢) = E j(x\,)ij(«:) + Atnv(t).
j=-r y=-r
Var,+ 1,0 ¢
Starting with the initial data
(2.1b) v,(t = 0) = ‘v' Ve 0,400 ,
the scheme (2.1a) is then used to advance in time. To enable our calculation, the r
boundary values {vv(t + Ac)}t.1 are required at each time step, and these are obtained

vaQ
from solvable boundary conditions of the form

(2.1¢) f j\,(x\,)vj(t + At) = g ij(xv)vj(t) + AtH vit)e

Vs 0,1,000,!' -1,
Usually for obtaining vo(t + At) one complements the N - £ inflow values taken from
(1.4) by additional £ consistent ocutflow relations and in case of higher order basic

scheme, r > 1, extra boundary conditions as in (2.1c) must be provided for hoth the
,t-1

Ve q

We now have an overall difference approximation consisting of interior scheme (2.1a)

outflow and inflow components of lvv"‘ + At)

together with boundary oconditions (2.1¢c) and the main property we would like our
approximation to have is stability:; that is, we want small initial perturbations not to
excite our homogeneous computation but rather to have only a small comparable affect. PFor,
it is the stability which guarantees the convergence of our results to the exact solution

of (1.1), (1.4), as we refine the mesh Ax,At * 0. In fact lack of stability is most

1ikely to cause our computation to diverge. We therefore make the natural
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Assumption. The basic scheme (1.6a) is stable for the pure Cauchy problem == < Vv < "(”.

We are now left with the task of determining whether our boundary conditions (2.1¢c)
majintain the assumed interior stability overall or either our careless boundary treatment
renders the overall computation unstable. During the last decade since the appearance of
the works of Kreiss and his coworkers, [3]={5), which introduce a stability theory for
approximations to such mixed problems, many safe procedures to handle the outflow
components were analyzed (e.g. [5]-([8]). Here however, we are interested in the inflow
components whose boundary calculation is required when either the exact inflow conditions
(1.4) are not known or when extra inflow values must be provided at {xv}:-,. Our wmain

V=1
result is basically a negative one telling what one should not d.

Theorem. If the boundary conditions (2.1c) are zeroth-order accurate with an inflow

component of system (1.1), i.e., there exists 0: e ®' such that

(2.2) § (8, - ‘jv": -0, V0,1, ~1,

i=0 |x=0
then the overall approximation (2.1) is unstable.

The above theorem is clearly the digcrete analogue of the necessary requirement (1.4b)
for well-posedness; both reflect the independence of the inflow boundary values on the
differentlal equation. In the special case of explicit one~leveled boundary extrapolation
it was first proved by KXreiss (9] for the scalar case, and extended substantially by Burns
[10] for the vector case. Here we give a simplified version of her proof for the general
two-leveled implicit approximation. The assumption mads in [10, Assumption 3.2}, that Aj,
Aj are polynomials in A, 1is removed here so our result is also valid for multileveled
multidimensional approximations, as can be shown using the standard devices which for
simplicity are omitted. FPinally we give a direct estimate of the unstable polynomial

growth of the computed solution. Even though such growth by itself may bs accepted as weak

“’bocal stability around x = 0 is in fact enough - see Section 3.
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instability, it is rejected here due to the possible reflections at the other (right)

boundary which will then result into the untolerable exponential instability (S].

As an example, consider any standard S-point interior scheme approximating the system

! (E.1a) above. Two dimensional inflow eigenspace is to be determined at (x1 ,t) and - in
cage the exact inflow oconditions are not known - at (xo,t) as well. According to the
above theorem, any attempt to calculate the missing values in an inflow-dependent manner,
that is using zeroth-order accurate conditions for either Ccz -p, §c0 + p or any
combination of them will result into instability.

We close this section by finally noting that in general the boundary conditions (2.1¢)
are obtained using consistent discretizations of the two sources available to us - the
differential system (1.1a) augmented by the inflow boundary conditions (1.4). By the above , J‘I
theorem, the approximated inflow boundary values cannot be calculated in an inflow- 3

dependent manner by a consistent discretization of solely the inflow part of systea (1.1a);

one must take into account also the outflow data via conditions (1.4). A detailed
procedure along these lines to achieve these values with any degree of accuracy is

described in [8].
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3. UNCONDITIONAL INSTABILITY~PROOF OF MAIN THEOREM
From the nature of our negative result it is sufficient to restrict attention to the
case localized about x = 0, since it is the constant coefficient case Aj B A3(0),
Ay 2 Ay00), ij H B’\,(o), ‘3\: E ‘3»“’" which infers the instability of the general case.

The solution of the homogeneous approximation (2.1) with vanishing interior initial

data £, =0 (£ = (f..00,f,_ )" yet to be determined) is given by the Cauchy formula
v
1 n .
3.1) vylt) = = { £y, (2) dz, t = nedt .

Here I is any contour enclosing the spectrum of the underlying difference
-

operator and {”v(‘)}. , L I\P\,l2 < ® obeys the resolvent equation
3 ve) Vap
(3.2a) ji-r (Mj - Aj)¢v+j(‘) - o, Ver, + 1,.0. .

together with the side conditions

{(3.2b) ? (zB -ijw

(z) o ¢, \DOO,‘I,...,!.‘-‘I .
=0 Jv v

3

Equation (3.2a) is an ordinary difference equation with constant coefficient matrices; its

most general lz-houndod solution is givan by [11]

F (3.3) Py lz) = X(z)Lk(z)g, k=0,%¢c0 ,
b vhere we employed the assumption of the Cauchy stability. Here X(z) oonsists of Nr
columns vectors - they are the N-dimensional Jordan chains {OE(:)}“I associated with the

‘ characteristic eigenvalue probln“’

(”!y consistency it is enough to consider only simple Jordan chains
] around z = 1 -~ see below.
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(3.4) f (A, = A )Kj(z)t (z) =0,
b 3" m m
y=-r
L(z) is an Nr-dimentional matrix consisting of the Jordan blocks associated with the

eigenvalues "n(’)' and O is an Nr-dimensional free vector yet to be determined by Nr

boundary conditions (3.2b):

(3.52) D(z)g = £,  D(z) = [Dy(e),.ee,D__ (22"
where
(3.5b) D () = j§o (28, - ajv)x(:)nj(z). Ve 0,00, =1,

The key of the instability proof lies in the study of the singular point £ = 1;
indeed in what follows we will show that z = 1 is an eigenvalue of the problem whose
eigenprojection has a polynomial growth; this in turn implies the unstable polynomial
growth of the whole difference operator. In order to d 80, We are now going to use the
consistency condition to gain more precise information about the bshaviour near z = 1.

In [5) it was proved bLy the assumption of Cauchy stability, that the matrix L(z) in
the neighbourhood of z = 1 takes the form (5, Theorem 9.1]

[14(:) 0 ]
(3.6a) L{z) = v

0 Ly (2)

where using the consistency of the interior scheme it follows that the 2L-dimensional
L*(s) is of the form (5, Theorem 9.3)
(3.6b) L2) =1 - W Nz - 1) s 0z - 12,
while the (Nr - L) X (Nr - £) Ly(z) satisties
(3 .6¢c) Lo(ziLy(2) € (1 = &)1, §>0.,
Consider the first £ column vectors 0-(:)“‘1.“ in X(z) which we denote by X, (z).
Ingerting the corresponding eigenvalues of L, (z) from (3.6b), xm(z) a1 - (Mn)'1(z - 1)

+ 0z - 1)2, into (3.4), and using the consigtency of the basic scheme which amounts to

.

R Y -,
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the standard

A = - - - A - .
,?., 4 A, j?., j(Aj Aj) ljl 1]

we arrive to

(z-n'ﬁ A

sher ju zAXn]Qn(z) Otz ~ 1) .

By the solvability E Aj‘ljele-o =z Aj is nonsingular; dividing by (z - 1)L Aj we
obtain that ==

(3.7) X,(2) =X (1) + 0tz - 1), X, (1)ed*,

where X_{1) consists of the . column vectors On(i) E ’m - the eigenvectors of A
corresponding to its positive eigenvalues Xn > 0.

We now claim that (D(z)1”' is singular at z = 1. To see that we take T to be an
Nr-dimensional vector whose first £ scalar components, T 4+ are uniquely determined as
the solution of (see (2.2))

X N1, =9, ,
and the remaining Nr - L components are taken to zero, Taking into account (3.6b) and

(3.7) we then f£ind by (2.2)

(3.8a) D(z)T, = 3 (B

i G T By X T, + Oz = 1) = 0({z - 1)

and hence for d(z) 2 det{D(z)] we conclude that
{3.8b) az) = Oz - 1)® s3> 1.,
The proof of the theorem is almost at our hands now; we consider that part of the solution

corresponding to the eigenprojection associated with z = 1:

(3.9a) Vv(t) bd 2—:T lz {| . Zan(z)dzl Ve 0,l,c0ep t = nedt ’




where by (3.3), (3.5), wv(z) has the analytic representation ([D(:)]'1 = D(z)/4(z))

(2) 0

v
L
{3.9b) o (z) = [x+(z).xo(z)][ * ] D(z)t/alz) .
)

0 Lo (z
Taking (3.8b) into acocount, the residue theorem implies

8=1
(3.10) wer = I (2)eresftz - 0¥ 0]
k=0 fe=1

and since by (3.6b) L,(z = 1) = I we finally conclude

{n+1)°r 1/2
(3.11) i)t 2 [ § v, (0)1?] = const.(e/ae®ign
)

(1) As in [10] one can show that also in our case, the resolvent condition
1$(z)! € const.(fz| - 1)'1 is violated. 1Indeed using the representation (3.9) and
employing the equivalent H-norm, W(‘)'H = [éo 0;(:)!(3)*“(2)1’/2 ¢ with
H(z) = [X,(2)X(z)]1"", one gets Jy(z)! > const.lz - 1173/2,
(1i) Unlike the case of one-leveled boundary extrapolation [10, S8ection 5], it does not
follow that the more accurate the boundary conditions with an inflow part of our
problem, the worse is the singular behaviour at z ~ 1 - the R.H.B8. of (3.8a)

remains unaffected in the genuinely two-leveled case.
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